Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 16(3): e20345, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259688

RESUMO

Melilotus officinalis is an important legume crop with forage and Chinese medicinal value. The unknown genome of M. officinalis restricted the domestication and utilization of the species and its germplasm resource diversity. A chromosome-scale assembly of the M. officinalis genome was assembled and analysed. The 976.27 Mb of genome was divided into eight chromosomes covering 99.16% of the whole genome. A total of 50022 genes were predicted in the genome. M. officinalis and Melilotus albus shared a common ancestor 0.5-5.65 million years ago (MYA). A genome-wide doubling event occurred 68.93 MYA according to the synonymous nucleotide-substitution values. A total of 552102 tandem repeats were predicted, and 46004 SSR primers of TRs with 10 or more base pairs were developed and designed. The elucidation of the M. officinalis genome provides a compelling model system for studying the genetic, evolutionary and biosynthesis of this legume.


Assuntos
Fabaceae , Melilotus , Melilotus/genética , Fabaceae/genética , Genoma de Planta , Cromossomos
2.
PeerJ ; 11: e15066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935918

RESUMO

Background: Tannins are the main bottlenecks restricting the transformation efficiency of plants. Hongyingzi is a special tannin-containing sorghum cultivar used in brewing. Methods: In this study, a highly efficient microprojectile transformation system for tannin-containing sorghum was successfully exploited using immature embryos (IEs) of Hongyingzi as explants. Results: Hongyingzi presented two types of calli. Type II calli were found to be the most suitable and effective explants for transformation. After optimization of the geneticin (G418) concentration and tissue culture medium, an average transformation frequency of 27% was achieved. Molecular analyzis showed that all transgenic plants were positive and showed transgenes expression. The inheritance analyzis confirmed that the transgenes could be inherited into the next generation. Thus, we successfully established an efficient transformation system for tannin-containing sorghum and demonstrated the possibility of breaking the restriction imposed by tannins in plants.


Assuntos
Sorghum , Taninos , Taninos/metabolismo , Sorghum/genética , Transformação Genética , Transgenes , Plantas Geneticamente Modificadas/genética , Grão Comestível
3.
Theor Appl Genet ; 136(3): 60, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912984

RESUMO

KEY MESSAGE: Sudangrass is more similar to US commercial sorghums than to cultivated sorghums from Africa sequence-wise and contain significantly lower dhurrin than sorghums. CYP79A1 is linked to dhurrin content in sorghum. Sudangrass [Sorghum sudanense (Piper) Stapf] is a hybrid between grain sorghum and its wild relative S. bicolor ssp. verticilliflorum and is grown as a forage crop due to its high biomass production and low dhurrin content compared to sorghum. In this study, we sequenced the sudangrass genome and showed that the assembled genome was 715.95 Mb with 35,243 protein-coding genes. Phylogenetic analysis with whole genome proteomes demonstrated that the sudangrass genome was more similar to US commercial sorghums than to its wild relatives and cultivated sorghums from Africa. We confirmed that at seedling stage, sudangrass accessions contained significantly lower dhurrin as measured by hydrocyanic acid potential (HCN-p) than cultivated sorghum accessions. Genome-wide association study identified a QTL most tightly associated with HCN-p and the linked SNPs were located in the 3' UTR of Sobic.001G012300 which encodes CYP79A1, the enzyme that catalyzes the first step of dhurrin biosynthesis. As in other grasses such as maize and rice, we also found that copia/gypsy long terminal repeat (LTR) retrotransposons were more abundant in cultivated than in wild sorghums, implying that crop domestication in the grasses was accompanied by increased copia/gypsy LTR retrotransposon insertions in the genomes.


Assuntos
Sorghum , Sorghum/genética , Filogenia , Estudo de Associação Genômica Ampla , Cromossomos , Evolução Molecular
4.
PeerJ ; 10: e14452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518287

RESUMO

Foxtail millet is commonly used as a food and forage grass. ERECTA (ER) is a receptor-like kinase that can improve plant biomass and stress resistance. The sorghum SbER10_X1 gene was used as a probe to identify ER family genes on the Setaria italica genomes (SiERs), and determine the characteristics of the SiERs family. Herein, the structural features, expression patterns, and thermotolerance of SiERs function were identified by bioinformatics analysis, real-time PCR and transgenesis estimation. Results showed that SiERs had four members: two members were located on chromosome 1 with a total of six copies (SiER1_X1, SiER1_X2, SiER1_X3, SiER1_X4, SiER1_X5, and SiER1_X6), and two were on chromosome 4, namely, SiER4 (SiER4_X1 and SiER4_X2) and SiERL1. Among them, SiER1_X4 and SiER4_X1 were expressed highest in above-ground organs of foxtail millet, and actively responded to treatments with abscisic acid, brassinolide, gibberellin, and indole acetic acid. After overexpression of SiER1_X4 and SiER4_X1 in Arabidopsis, the plant height and biomass of the transgenic Arabidopsis significantly increased. Following high-temperature treatment, transgenic seedlings survived better compared to wild type. Transgenic lines showed higher SOD and POD activities, and expression level of AtHSF1 and AtBl1 genes significantly increased. These results indicated that SiER1_X4 and SiER4_X1 played important regulatory roles in plant growth and thermotolerance. The two genes provide potential targets for conventional breeding or biotechnological intervention to improve the biomass of forage grass and thermotolerance of field crops.


Assuntos
Arabidopsis , Setaria (Planta) , Termotolerância , Arabidopsis/genética , Setaria (Planta)/genética , Proteínas de Plantas/genética , Termotolerância/genética , Biomassa , Melhoramento Vegetal
5.
PeerJ ; 8: e10077, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083135

RESUMO

Protoplasts are commonly used in genetic and breeding research. In this study, the isolation of sorghum protoplasts was optimized and applied to transient gene expression and editing by CRISPR/Cas9. The protoplast was most viable in 0.5 M mannitol, which was the highest of three concentrations after 48- and 72-hours treatments. Using this method we can derive an average of 1.6×106 cells which vary from 5 to 22 nm in size. The average transfection of the protoplasts was 68.5% using the PEG-mediated method. The subcellular assays located Sobic.002G279100-GFP and GFP proteins in the cell compartments as predicted bioinformatically. Two CRISPR/Cas9 plasmids were transfected into sorghum protoplasts to screen for an appropriate sgRNA for gene editing. One plasmid can correctly edit the target region using a single protoplast cell as template DNA. Our results indicated that the protoplast assays as optimized are suitable for transient gene expression and sgRNA screening in CRISPR/Cas9 gene editing procedures.

6.
BMC Plant Biol ; 19(1): 306, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296169

RESUMO

BACKGROUND: Phosphorus (P) deficiency in soil is a worldwide issue and a major constraint on the production of sorghum, which is an important staple food, forage and energy crop. The depletion of P reserves and the increasing price of P fertilizer make fertilizer application impractical, especially in developing countries. Therefore, identifying sorghum accessions with low-P tolerance and understanding the underlying molecular basis for this tolerance will facilitate the breeding of P-efficient plants, thereby resolving the P crisis in sorghum farming. However, knowledge in these areas is very limited. RESULTS: The 29 sorghum accessions used in this study demonstrated great variability in their tolerance to low-P stress. The internal P content in the shoot was correlated with P tolerance. A low-P-tolerant accession and a low-P-sensitive accession were chosen for RNA-seq analysis to identify potential underlying molecular mechanisms. A total of 2089 candidate genes related to P starvation tolerance were revealed and found to be enriched in 11 pathways. Gene Ontology (GO) enrichment analyses showed that the candidate genes were associated with oxidoreductase activity. In addition, further study showed that malate affected the length of the primary root and the number of tips in sorghum suffering from low-P stress. CONCLUSIONS: Our results show that acquisition of P from soil contributes to low-P tolerance in different sorghum accessions; however, the underlying molecular mechanism is complicated. Plant hormone (including auxin, ethylene, jasmonic acid, salicylic acid and abscisic acid) signal transduction related genes and many transcriptional factors were found to be involved in low-P tolerance in sorghum. The identified accessions will be useful for breeding new sorghum varieties with enhanced P starvation tolerance.


Assuntos
Fósforo/deficiência , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética , Sorghum/genética , Grão Comestível/genética , Grão Comestível/fisiologia , Perfilação da Expressão Gênica , Solo/química , Sorghum/fisiologia
7.
Front Plant Sci ; 9: 1146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186292

RESUMO

Understanding the genetic function of the forage quality-related traits, including crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose (HC), and cellulose (CL) contents, is essential for the identification of forage quality genes and selection of effective molecular markers in sorghum. In this study, we genotyped 245 sorghum accessions by 85,585 single-nucleotide polymorphisms (SNPs) and obtained the phenotypic data from four environments. The SNPs and phenotypic data were applied to multi-locus genome-wide association studies (GWAS) with the mrMLM software. A total of 42 SNPs were identified to be associated with the five forage quality-related traits. Moreover, three and two quantitative trait nucleotides (QTNs) were simultaneously detected among them by three and two multi-locus methods, respectively. One QTN on chromosome 5 was found to be associated simultaneously with CP, NDF, and ADF. Furthermore, 3, 2, 2, 5, and 2 candidate genes were identified to be responsible for CP, NDF, ADF, HC, and CL contents, respectively. These results provided insightful information of the forage quality-related traits and would facilitate the genetic improvement of sorghum forage quality in the future.

8.
Anim Sci J ; 89(9): 1271-1279, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29851189

RESUMO

Two trials were conducted to assess the effects of tributyrin (TB) supplementation on ruminal microbial protein yield and fermentation characteristics in adult sheep. In an in vitro trial, substrate was made to offer TB at 0, 2, 4, 6, and 8 g/kg on a dry matter (DM) basis and incubated for 48 hr. In an in vivo trial, 45 adult ewes were randomly assigned by initial body weight (55 ± 5 kg) to five treatments of nine animals over an 18-day period. Total mixed ration was made to offer TB to ewes at 0, 2, 4, 6, and 8 g/kg on a DM basis. The in vitro trial showed that TB enhanced apparent degradation of DM (p = .009), crude protein (p < .001), neutral detergent fiber (p = .007) and acid detergent fiber (p = .010) and increased methanogenesis (p < .001), respectively. The in vivo trial showed that TB decreased DM intake (p < .001) and enhanced rumen microbial N synthesis (p < .001), respectively. Both in vitro and in vivo trials showed that TB increased total volatile fatty acid concentration and enhanced fibrolytic enzyme activity. The results indicated that TB might exert positive effects on microbial protein yield and fermentation in the rumen.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Fermentação/fisiologia , Rúmen/metabolismo , Ovinos/metabolismo , Ovinos/fisiologia , Triglicerídeos/administração & dosagem , Erros Inatos do Metabolismo dos Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Hipoplasia do Esmalte Dentário , Diabetes Mellitus , Nanismo , Ácidos Graxos Voláteis/metabolismo , Feminino , Técnicas In Vitro , Deficiência Intelectual , Microcefalia , Rúmen/enzimologia , Rúmen/microbiologia , Triglicerídeos/farmacologia
9.
PeerJ ; 4: e2005, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27231650

RESUMO

Cinnamoyl-CoA reductase (CCR) is the first enzyme in the monolignol-specific branch of the lignin biosynthetic pathway. In this research, three sorghum CCR genes including SbCCR1, SbCCR2-1 and SbCCR2-2 were cloned and characterized. Analyses of the structure and phylogeny of the three CCR genes showed evolutionary conservation of the functional domains and divergence of function. Transient expression assays in Nicotiana benthamiana leaves demonstrated that the three CCR proteins were localized in the cytoplasm. The expression analysis showed that the three CCR genes were induced by drought. But in 48 h, the expression levels of SbCCR1 and SbCCR2-2 did not differ between CK and the drought treatment; while the expression level of SbCCR2-1 in the drought treatment was higher than in CK. The expression of the SbCCR1 and SbCCR2-1 genes was not induced by sorghum aphid [Melanaphis sacchari (Zehntner)] attack, but SbCCR2-2 was significantly induced by sorghum aphid attack. It is suggested that SbCCR2-2 is involved in the process of pest defense. Absolute quantitative real-time PCR revealed that the three CCR genes were mainly expressed in lignin deposition organs. The gene copy number of SbCCR1 was significantly higher than those of SbCCR2-1 and SbCCR2-2 in the tested tissues, especially in stem. The results provide new insight into the functions of the three CCR genes in sorghum.

10.
PLoS One ; 11(5): e0154947, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152648

RESUMO

Sudangrass, Sorghum sudanense, is an important forage in warm regions. But little is known about its genome. In this study, the transcriptomes of sudangrass S722 and sorghum Tx623B were sequenced by Illumina sequencing. More than 4Gb bases were sequenced for each library. For Tx623B and S722, 88.79% and 83.88% reads, respectively were matched to the Sorghum bicolor genome. A total of 2,397 differentially expressed genes (DEGs) were detected by RNA-Seq between the two libraries, including 849 up-regulated genes and 1,548 down-regulated genes. These DEGs could be divided into three groups by annotation analysis. A total of 44,495 single nucleotide polymorphisms (SNPs) were discovered by aligning S722 reads to the sorghum reference genome. Of these SNPs, 61.37% were transition, and this value did not differ much between different chromosomes. In addition, 16,928 insertion and deletion (indel) loci were identified between the two genomes. A total of 5,344 indel markers were designed, 15 of which were selected to construct the genetic map derived from the cross of Tx623A and Sa. It was indicated that the indel markers were useful and versatile between sorghum and sudangrass. Comparison of synonymous base substitutions (Ks) and non-synonymous base substitutions (Ka) between the two libraries showed that 95% orthologous pairs exhibited Ka/Ks<1.0, indicating that these genes were influenced by purifying selection. The results from this study provide important information for molecular genetic research and a rich resource for marker development in sudangrass and other Sorghum species.


Assuntos
Marcadores Genéticos , Sorghum/genética , Transcriptoma , Expressão Gênica , Genes de Plantas , Mutação INDEL , Polimorfismo de Nucleotídeo Único
11.
Funct Integr Genomics ; 13(4): 445-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24045932

RESUMO

Sorghum is not only an important cereal crop but also a biofuel crop. The sorghum brown midrib mutant 6 (bmr6) has a reduced lignin content in the cell walls and vascular tissues, which could potentially be advantageous for cellulosic biofuel production. Meanwhile, both dry matter yield and plant height were decreased in the bmr6 mutant. To identify genes affected in the mutant, differential gene expression analysis was performed for bmr6 and the wild type. As a result, a total of 1,052 differentially expressed genes were detected between the two samples, of which 166 genes were downregulated and 886 genes were upregulated. Five hundred seventy-nine of the 1,052 differentially expressed genes could be assigned to 154 documented pathways. These pathways mainly included primary and secondary metabolism. Therefore, mutation of the bmr6 gene, which impaired the biosynthesis of lignin, ultimately affected the expression of these genes associated with the growth and development of sorghum. Except for the bmr6 gene, 11 key enzyme genes of monolignols biosynthesis were upregulated. Promoter analysis identified that these genes have common MYB sites. It revealed that a feedback mechanism existed in the pathway and a MYB1 transcription factor (Sb02g031190) could associate with the upregulation of these genes in sorghum. In this study, we investigated gene expressions at a global level in sorghum bmr6 mutant and provided valuable insights into the mechanisms of lignin biosynthesis.


Assuntos
Mutação , Proteínas de Plantas/metabolismo , Sorghum/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Lignina/genética , Redes e Vias Metabólicas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Sorghum/enzimologia , Sorghum/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...